Bounds of distance Estrada index of graphs

نویسنده

  • Yilun Shang
چکیده

Let λ1, λ2, · · · , λn be the eigenvalues of the distance matrix of a connected graph G. The distance Estrada index of G is defined as DEE(G) = ∑ n i=1 ei . In this note, we present new lower and upper bounds for DEE(G). In addition, a Nordhaus-Gaddum type inequality for DEE(G) is given. MSC 2010: 05C12, 15A42.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Albertson energy and Albertson Estrada index of graphs

‎Let $G$ be a graph of order $n$ with vertices labeled as $v_1‎, ‎v_2,dots‎ , ‎v_n$‎. ‎Let $d_i$ be the degree of the vertex $v_i$ for $i = 1‎, ‎2‎, ‎cdots‎ , ‎n$‎. ‎The Albertson matrix of $G$ is the square matrix of order $n$ whose $(i‎, ‎j)$-entry is equal to $|d_i‎ - ‎d_j|$ if $v_i $ is adjacent to $v_j$ and zero‎, ‎otherwise‎. ‎The main purposes of this paper is to introduce the Albertson ...

متن کامل

Sharp Upper bounds for Multiplicative Version of Degree Distance and Multiplicative Version of Gutman Index of Some Products of Graphs

In $1994,$ degree distance  of a graph was introduced by Dobrynin, Kochetova and Gutman. And Gutman proposed the Gutman index of a graph in $1994.$ In this paper, we introduce the concepts of  multiplicative version of degree distance and the multiplicative version of Gutman index of a graph. We find the sharp upper bound for the  multiplicative version of degree distance and multiplicative ver...

متن کامل

Bounds on the Distance Energy and the Distance Estrada Index of Strongly Quotient Graphs

The notion of strongly quotient graph (SQG) was introduced by Adiga et al. (2007). In this paper, we obtain some better results for the distance energy and the distance Estrada index of any connected strongly quotient graph (CSQG) as well as some relations between the distance Estrada index and the distance energy. We also present some bounds for the distance energy and the distance Estrada ind...

متن کامل

The Signless Laplacian Estrada Index of Unicyclic Graphs

‎For a simple graph $G$‎, ‎the signless Laplacian Estrada index is defined as $SLEE(G)=sum^{n}_{i=1}e^{q^{}_i}$‎, ‎where $q^{}_1‎, ‎q^{}_2‎, ‎dots‎, ‎q^{}_n$ are the eigenvalues of the signless Laplacian matrix of $G$‎. ‎In this paper‎, ‎we first characterize the unicyclic graphs with the first two largest and smallest $SLEE$'s and then determine the unique unicyclic graph with maximum $SLEE$ a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Ars Comb.

دوره 128  شماره 

صفحات  -

تاریخ انتشار 2016